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The sti!ness and mass matrices of a rotating twisted and tapered beam element are
derived. The angle of twist, breadth and depth are assumed to vary linearly along the length
of beam. The e!ects of shear deformation and rotary inertia are also considered in deriving
the elemental matrices. The "rst four natural frequencies and mode shapes in
bending}bending mode are calculated for cantilever beams. The e!ects of twist, o!set, speed
of rotation and variation of depth and breadth taper ratios are studied.
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1. INTRODUCTION

Generally, turbomachine blades are idealized as tapered cantilever beams. In order to re"ne
the analysis the e!ects of pre-twist and rotation are also included. As the blades are short in
some of the designs and may vibrate in higher-frequency ranges, the e!ects of shear
deformation and rotary inertia may be of considerable magnitude. Various investigators in
the "eld of turbine-blade vibrations have solved the di!erential equations of motion, by
taking into account one or more of the above-mentioned e!ects.

The analysis of tapered beams has been made by many investigators using di!erent
techniques. Rao [1] used the Galerkin method, Housner and Keightley [2] applied the
Myklestad procedure, Rao and Carnegie [3] used the "nite di!erences approach, Martin
[4] adopted a perturbation technique and Mabie and Rogers [5] solved the di!erential
equations using Bessel functions to "nd the natural frequencies of vibration of tapered
cantilever beams.

In analysing the pre-twisted beams, various approaches have been used by various
investigators. Mendelson and Gendler [6] used the station functions, Rosard [7] applied
the Myklestad method, Di Prima and Handleman [8] adopted the Rayleigh}Ritz
procedure, Carnegie and Thomas [9] used the "nite di!erence techniques and Rao [10]
considered the Galerkin method for the analysis of pre-twisted beams. The bending
vibration of a twisted rotating beam was considered by Targo! [11].

The rotation e!ect in beam analysis has also been considered using di!erent formulation
and solution procedures. Targo! applied the matrix method, Yntema [12] applied the
Rayleigh}Ritz procedure, Isakson and Eisley [13] used the Rayleigh}Southwell procedure,
Banerjee and Rao [14] applied the Galerkin procedure, Carnegie et al. [15] applied the
"nite di!erence scheme, Krupka and Baumanis [16] used the Myklestad method and Rao
0022-460X/01/160103#22 $35.00/0 ( 2001 Academic Press
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and Carnegie [17] used the extended Holzer method to "nd the vibration characteristics of
rotating cantilever beams.

The "nite element technique has also been applied by many investigators, mostly for the
vibration analysis of beams of uniform cross-section. All these investigations di!er from one
another in the nodal degrees of freedom taken for deriving the elemental sti!ness and mass
matrices. McCalley [18] derived the consistent mass and sti!ness matrices by selecting the
total de#ection and total slope as nodal co-ordinates. Kapur [19] took bending de#ection,
shear de#ection, bending slope and shear slope as nodal degrees of freedom and derived the
elemental matrices of beams with linearly varying inertia. Carnegie et al. [20] analyzed
uniform beams by taking few internal nodes in it. Nickel and Sector [21] used total
de#ection, total slope and bending slope of the two nodes and the bending slope at the
mid-point of the beam as the degrees of freedom to derive the elemental sti!ness and the
mass matrices of order seven. Thomas and Abbas [22] analyzed uniform Timoshenko
beams by taking total de#ection, total slope, bending slope and the derivative of the
bending slope as nodal degrees of freedom.

The "nite element analysis of vibrations of twisted blades based on beam theory was
considered by Sisto and Chang [23]. Sabuncu and Thomas [24] studied the vibration
characteristics of pre-twisted aerofoil cross-section blade packets under rotating conditions.
An improved two-node Timoshenko beam "nite element was derived by Friedman and
Kosmatka [25]. The vibration of Timoshenko beams with discontinuities in cross-section
was investigated by Farghaly and Gadelab [26, 27]. Corn et al. [28] derived "nite element
models through Guyan condensation method for the transverse vibration of short beams.
Gupta and Rao [29] considered the "nite element analysis of tapered and twisted
Timoshenko beams.

In this work, the "nite element technique is applied to "nd the natural frequencies
and mode shapes of beams in the bending}bending mode of vibration by taking
into account the taper, the pre-twist and the rotation simultaneously. The coupling that
exists between the #exural and torsional vibration is not considered. The taper and the
angle of twist are assumed to vary linearly along the length of the beam. The element
sti!ness and mass matrices are derived and the e!ects of o!set, rotation, pre-twist, depth
and breadth taper ratios and rotary inertia and shear deformation on the natural
frequencies are studied. Various special cases of beam vibration can be obtained from the
general equations derived.

2. ELEMENT STIFFNESS AND MASS MATRICES

2.1. DISPLACEMENT MODEL

Figure 1(a) shows a doubly tapered, twisted beam element of length l with the nodes as
1 and 2. The breadth, depth and the twist of the element are assumed to be linearly varying
along its length. The breadth and depth at the two nodal points are shown as b

1
, h

1
and

b
2
, h

2
respectively. The pre-twist at the two nodes is denoted by h

1
and h

2
. Figure 1(b)

shows the nodal degrees of freedom of the element where bending de#ection, bending slope,
shear de#ections and shear slope in the two planes are taken as the nodal degrees of
freedom. Figure 1(c) shows the angle of twist h at any section z. The beam is assumed to
rotate about the x}x-axis at a speed of X rad/s.

The total de#ections of the element in the y and x directions at a distance z from node 1,
w(z) and v(z), are taken as

w (z)"w
b
(z)#w

s
(z), v(z)"v

b
(z)#v

s
(z), (1)



Figure 1. (a) An element of tapered and twisted beam, (b) degrees of freedom of an element, (c) angle of twist h,
(d) rotation of tapered beam.
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where w
b
(z) and v

b
(z) are the de#ections due to bending in the yz and xz planes respectively,

and w
s
(z) and v

s
(z) are the de#ections due to shear in the corresponding planes.

The displacement models for w
b
(z), w

s
(z), v

b
(z) and v

s
(z) are assumed to be polynomials of

third degree. They are similar in nature except for the nodal constants. These expressions
are given by

w
b
(z)"

u
1

l3
(2z3!3lz2#l3)#

u
2

l3
(3lz2!2z3)!

u
3

l2
(z3!2lz2#l2z)!

u
4

l2
(z3!lz2),

w
s
(z)"

u
5

l3
(2z3!3lz2!l3)#

u
6

l3
(3lz2!2z3)!

u
7

l2
(z3!2lz2#l2z)!

u
8

l2
(z3!lz2),



106 S. S. RAO AND R. S. GUPTA
v
b
(z)"

u
9

l3
(2z3!3lz2!l3)#

u
10
l3

(3lz2!2z3)!
u
11
l2

(z3!2lz2#l2z)

(2)

!

u
12
l2

(z3!lz2),

v
s
(z)"

u
13
l3

(2z3!3lz2!l3)#
u
14
l3

(3lz2!2z3)!
u
15
l2

(z3!2lz2#l2z)

!

u
16
l2

(z3!lz2),

where u
1
, u

2
, u

3
and u

4
represent the bending degrees of freedom and u

5
, u

6
, u

7
and u

8
are

the shear degrees of freedom in the yz plane; u
9
, u

10
, u

11
and u

12
represent the bending

degrees of freedom and u
13

, u
14

, u
15

and u
16

shear degrees of freedom in the xz plane.

2.2. ELEMENT STIFFNESS MATRIX

The total strain energy ; of a beam of length l, due to bending and shear deformation
including rotary inertia and rotation e!ects is given by
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P (z)"P
L`e

e`ze`z

mX2m dm+
oAX2

2g
[(¸#e)2!(e#z

e
#z)2]

(4)

"

oAX2

g CAe¸#

1

2
¸2!ez

e
!

1

2
z2
eB!(e#z

e
)z!

1

2
z2D ,

p
w
(z)"

oAX2

g
(w

b
#w

s
), p

v
(z)"

oAX2

g
(v

b
#v

s
), (5, 6)

where e is the o!set and z
e
is the distance of the "rst node of the element from the root of the

beam as shown in Figure 1(d), and P (z) is the axial force acting at section z.
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As the cross-section of the element changes with z and as the element is twisted, the
cross-sectional area A, and the moments of inertia I

xx
, I

yy
and I

xy
will be functions of z:
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where x@x@ and y@y@ are the axes inclined at an angle h, the angle of twist, at any point in the
element, to the original axes xx and yy as shown in Figure 1(c). The value of I

x{y{
"0 and the

values of I
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and I
y{y{

can be computed as
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By substituting the expressions of w
b
, w

s
, v

b
, v

s
, A, I

xx
, I
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and I

yy
from equations (2), (7)

and (9) into equation (3), the strain energy ; can be expressed as
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where u is the vector of nodal displacements u
1
, u

2
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, and [K] is the elemental

sti!ness matrix of order 16. Denoting the integrals
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the element sti!ness matrix can be expressed as

[K]"
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(21)

where [AK], [BK], [CK], [DK], MEK] and [FK] are symmetric matrices of order 4 and
their elements are formulated in Appendix B. [0] is a null matrix of order 4.

2.3. ELEMENT MASS MATRIX

The kinetic energy of the element ¹ including the e!ects of shear deformation and rotary
inertia is given by
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By de"ning
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where uR
l

denotes the time derivative of the nodal displacement u
i
, i"1, 2,2 , 16, the

kinetic energy of the element can be expressed as

¹"1
2
u5 [M]u5 , (27)

where [M] is the mass matrix given by
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and [AM], [BM] [CM] and [DM] are symmetric matrices of order 4 whose elements are
de"ned in Appendix A.

2.4. BOUNDARY CONDITIONS

The following boundary conditions are to be applied depending on the type of end
conditions.
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TABLE 1

Natural frequencies (Hz)

No of
elements

First mode Second mode Third mode Fourth mode

1 304.3 1191)66 2327)07 4552)23
2 296)22 1161)70 1779)50 4106)83
3 295)03 1155)97 1746)55 3747)04
4 294)85 1154)94 1741)39 3697)05
5 294)78 1154)67 1739)99 3689)82
6 294)78 1154)58 1739)40 3683)98
7 294)78 1154)54 1739)25 3683)91
8 294)78 1154)50 1739)10 3683)85

Data: length of beam"0)1524 m, breadth at root"0)0254 m, depth at root"0)0046 m, depth taper
ratio"2)29, breadth taper ratio"2)56, twist angle"453, shear coe$cient"0)833, E"2)07]1011 N/m2,
G"E/2)6, o!set"0, mass density"800 kg/m3.

Figure 2. E!ect of depth taper ratio and shear deformation on frequency ratio of rotating beam:**, without
shear deformation; } } } }, with shear deformation.
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3. SPECIAL CASES

The various special cases of the beam vibration problem can be solved by applying one or
more of the following four conditions:

(a) For non-rotating beams: X"0 which results in [EK]"[FK]"[0]. (32)

(b) For uniform beams: by setting b
2
"b

1
and h

2
"h

1
, one obtains
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1
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d
1
"d

2
"d

3
"d

4
"0 and d

5
"h

1
b3
1
.

Figure 3. E!ect of breadth taper ratio and shear deformation on frequency ratio of rotating beam: **, with
shear deformation; } } } }, without shear deformation.
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(c) For neglecting the e!ect of shear deformation: w
s
"v

s
"0 so that equations (1) and (2)

become

w (z)"w
b
(z) and v (z)"v

b
(z). (34)

Due to this, the order of [K] and [M] matrices reduces from 16 to 8.
(d) For beams without pre-twist: in this case, there will be no coupling between the moment

of inertia terms and one obtains

I
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, I

xy
"0. (35)

For vibration in the yz plane, v
b
"v

s
"0; for vibration in the xz plane, w

b
"w

s
"0.

This condition further reduces the size of matrices [K] and [M] by half. Thus, for the
general case (with shear deformation) the matrices will be of order 8 and, if coupled with
condition (c) these will be of order 4.

If the conditions (a), (b) and (d) are applied one gets the following expressions for [K] and
[M] for non-rotating uniform beams without pre-twist but with a consideration of rotary
inertia and shear deformation e!ects (for vibration in the y}z plane):
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12 !12 !6l !6l 0 0 0 0
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Equations (36) and (37) further reduce to the following well-known equations if the e!ects
of shear deformation and rotary inertia are neglected:

[K]"
EI

xx
l3

12 !12 !6l !6l

12 6l 6l

Symmetric 4l2 2l2

4l2

, (38)

[M]"
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1
h
1

420g
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Symmetric 4l2 !3l

4l2

. (39)

4. NUMERICAL RESULTS

The element sti!ness and mass matrices developed are used for the dynamic analysis of
cantilever beams. By using the standard procedures of structural analysis, the eigenvalue
Figure 4. E!ect of rotation and twist on "rst and second natural frequencies.
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problem can be stated as

([K
3
]!u2[M

3
])U

3
"0, (40)

where [K
3
] and [M

3
] denote the sti!ness and mass matrices of the structure, respectively,

U
3

indicates nodal displacement vector of the structure, and u is the natural frequency of
vibration.

A study of the convergence properties of the general element developed has been made
and the results are given in Table 1. It is seen that the results converge well even with only
four elements. The e!ects of shear deformation and depth taper ratio on the natural
frequencies of a rotating twisted beam are shown in Figure 2 for a beam of length 0)254 m,
o!set zero, depth at root 0)00865 m, breadth at root 0)0173 m, twist 453, rotation 100 r.p.s.
Figure 5. E!ect of rotation and twist on third and fourth natural frequencies: **, third mode; } } }, fourth
mode.
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and breadth taper ratio 3. The material properties of the beam are taken the same as those
given in Table 1. The e!ect of shear deformation is found to reduce the frequencies at higher
modes while at lower modes the results are nearly una!ected. There is an increase in the
frequencies of vibration with an increase in the depth taper ratio in the "rst, second and
fourth modes while a decrease has been observed in the case of third mode (vibration in
a perpendicular plane). Figure 3 shows the variation of natural frequencies with breadth
taper ratio. In this case the data are the same as in the case of Figure 2.

In Figures 4 and 5, the variation of frequency ratio with rotation and pre-twist is
studied. It can be seen that the frequency ratio changes slightly with the rotation
but appreciably with the twist. At higher modes (in Figure 5) the e!ect of twist can be seen
to be more pronounced. It is also observed that the frequency ratio increases with
an increase in the twist in the case of "rst and third modes while it decreases with an increase
of the twist in the case of second and fourth modes of vibration. In Figure 6, the e!ect of
o!set is studied for a twisted blade having 603 twist with the other data the same as that of
Figure 4. It is observed that an increase in o!set changes the frequency ratio more at higher
values of rotation. The frequency ratio has been found to increase with an increase in the
o!set.
Figure 6. E!ect of o!set and rotation on frequency ratio. O!set 1: e"0 m; o!set 2: e"0.0254 m; o!set 3:
e"0.0508 m; o!set 4: e"0.0762 m.
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5. CONCLUSION

The mass and sti!ness matrices of a thick rotating beam element with taper and twist are
developed for the eigenvalue analysis of rotating, doubly tapered and twisted Timoshenko
beams. The element has been found to give reasonably accurate results even with four "nite
elements. The e!ects of breadth and depth taper ratios, twist angle, shear deformation, o!set
and rotation on the natural frequencies of vibration of cantilever beams are found. The
consideration of shear deformation is found to reduce the values of the higher natural
frequencies of vibration of the beam. An increase in the breadth and depth taper ratios is
found to increase the "rst two modes of vibration. The frequency ratio is found to change
only slightly with rotation but appreciably with the twist of the beam.
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APPENDIX A: EXPRESSIONS FOR STRAIN AND KINETIC ENERGIES

A.1. EXPRESSION FOR STRAIN ENERGY (;)

A.1.1. Strain energy due to bending

If the bending de#ections in yz and xz planes of a beam are w
b
and v

b
, respectively, the

axial strain and stress induced due to w
b
and v

b
are given by e
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The strain energy stored in the beam due to bending is given by: ; due to bending
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where < is the volume, l is the length and A is the cross-sectional area of the beam.



118 S. S. RAO AND R. S. GUPTA
A.1.2. Strain energy due to shearing

Let F
x

and F
y

be the shear forces that produce the shear de#ections dv
s
and dw

s
in an

element of length dz respectively. Then the strain energy of the beam due to shearing is
given by

;
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By substituting AGk dv
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/dz and AGk dw

s
/dz for F

x
and F

y
, respectively, one obtains

;
due to shearing
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A.1.3. Strain energy due to rotation

The rotation of a beam induces an axial force P in the beam due to centrifugal action. If
the beam is bending in the yz plane (Figure A1), the change in the horizontal projection of
an element of length ds is given by

ds!dz"G(dz)2#A
Lw

Lz
dzB

2

H
1@2

!dz+
1

2 A
Lw

LzB
2
dz.

Since the axial force P acts against the changes in the horizontal projection, the work done
by P is given by

;
due to P andw
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1

2 P
l

0

P(z) A
dw

dzB
2
dz. (A.3)

The work done by the transverse distributed force p
w
(z) can be written as

;
due to pw

"P
l

0

p
w
(z)w dz. (A.4)
Figure A.1. An element of the beam in equilibrium.
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The expressions corresponding to the bending of the beam in the xz plane can be obtained
similarly as

;
due to P and v
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2 P
l

0

P(z) A
dv

dzB
2

dz, ;
due to pv

"P
l

0

p
v
(z)v dz. (A.5, 6)

The total strain energy of the beam can be obtained as given in equation (3) by combining
equations (A.1)}(A.6).

A.2. EXPRESSION FOR KINETIC ENERGY (¹)

Consider a small element of area dA and length dz at a point in the cross-section having
co-ordinates (x, y) with respect to x- and y-axes. The kinetic energy of this element is given
by

o
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[(wR 2#vR 2)#(y/Q
x
#x/Q

y
)2] dz dA,

where /
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y
denote the bending slopes, Lv
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b
/Lz, respectively, and a dot over

a symbol represents derivative with respect to time. Integrating this equation over the beam
cross-section, the kinetic energy of an element of length dz can be obtained as
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The kinetic energy of the entire beam (¹ ) can be expressed as
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which can be seen to be the same as in equation (22).

APPENDIX B: EXPRESSIONS FOR [AK], MBK],2 , [DM]

The following notation is used for convenience:
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where h
1

and h
2

denote the values of pre-twist at nodes 1 and 2, respectively, of the element.
As the nature of w

b
, w

s
, v

b
and v

s
is the same except for their positions in the sti!ness and

mass matrices, one can use wN to denote any one of the quantities w
b
, w

s
, v

b
or v

s
and in



TABLE B1

<alues of H
i,j

, R
i, j,k

, Q
i,j,k

R
i, j,k

Q
i, j,k

i j H
i,j

k"1 k"2 k"3 k"1 k"2 k"3 k"4 k"5

1 1 0 144)0 !144)0 36)0 36)0 !72)0 36)0 0)0 0)0
1 2 0 !144)0 144)0 !36)0 !36)0 72)0 !36)0 0)0 0)0
1 3 1 !72)0 84)0 !24)0 !18)0 42)0 !30)0 6)0 0)0
1 4 1 !72)0 60)0 !12)0 !18)0 30)0 !12)0 0)0 0)0
2 2 0 144)0 !144)0 36)0 36)0 !72)0 36)0 0)0 0)0
2 3 1 72)0 !84)0 24)0 18)0 !42)0 30)0 !6)0 0)0
2 4 1 72)0 !60)0 12)0 18)0 !30)0 12)0 0)0 0)0
3 3 2 36)0 !48)0 16)0 9)0 !24)0 22)0 !8)0 1)0
3 4 2 36)0 !36)0 8)0 9)0 !18)0 11)0 !2)0 0)0
4 4 2 36)0 !24)0 4)0 9)0 !12)0 4)0 0)0 0)0
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a similar manner the set (uN
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By letting P
i,j,k

(i"1,2, 4; j"1,2, 4; k"1,2, 7) denote the coe$cient of zk~1 l7~k for
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can be obtained as shown in Tables B1 and B2.

B.1. EVALUATION OF [BK]

As the procedure for the derivation of [AK], [BK],2, [DM] is the same, the expression
for [BK] is derived here as an illustration:
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TABLE B2

<alues of P
i, j,k

P
i, j,k

i j k"1 k"2 k"3 k"4 k"5 k"6 k"7

1 1 4)0 !12)0 9)0 4)0 !6)0 0)0 1)0
1 2 !4)0 12)0 !9)0 !2)0 3)0 0)0 0)0
1 3 !2)0 7)0 !8)0 2)0 2)0 !1)0 0)0
1 4 !2)0 5)0 !3)0 !1)0 1)0 0)0 0)0
2 2 4)0 !12)0 9)0 0)0 0)0 0)0 0)0
2 3 2)0 !7)0 8)0 !3)0 0)0 0)0 0)0
2 4 2)0 !5)0 3)0 0)0 0)0 0)0 0)0
3 3 1)0 !4)0 6)0 !4)0 1)0 0)0 0)0
3 4 1)0 !3)0 3)0 !1)0 0)0 0)0 0)0
4 4 1)0 !2)0 1)0 0)0 0)0 0)0 0)0
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B.2. EVALUATION OF [EK] AND [FK]
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Similarly,
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APPENDIX C: NOMENCLATURE

A area of cross-section
b breadth of beam
e o!set
E Young's modulus
g acceleration due to gravity
G shear modulus
h depth of beam
I
xx

, I
yy

, I
xy

moment of inertia of beam cross-section about xx-, yy- and xy-axis
[K] element sti!ness matrix
l length of an element
¸ length of total beam
[M] element mass matrix
t time parameter
u nodal degrees of freedom
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; strain energy
v displacement in xz plane
w displacement in yz plane
x, y co-ordinate axes
z co-ordinate axis and length parameter
z
e

distance of the "rst node of the element from the root of the beam
frequency ratio ratio of modal frequency to frequency of fundamental mode of uniform beam with

the same root cross-section and without shear deformation e!ects
a depth taper ratio"h

1
/h

2b breadth taper ratio"b
1
/b

2h angle of twist
o weight density
k shear coe$cient
X rotational speed of the beam (rad/s)

Subscripts
b bending
s shear
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