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The stiffness and mass matrices of a rotating twisted and tapered beam element are
derived. The angle of twist, breadth and depth are assumed to vary linearly along the length
of beam. The effects of shear deformation and rotary inertia are also considered in deriving
the elemental matrices. The first four natural frequencies and mode shapes in
bending-bending mode are calculated for cantilever beams. The effects of twist, offset, speed
of rotation and variation of depth and breadth taper ratios are studied.
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1. INTRODUCTION

Generally, turbomachine blades are idealized as tapered cantilever beams. In order to refine
the analysis the effects of pre-twist and rotation are also included. As the blades are short in
some of the designs and may vibrate in higher-frequency ranges, the effects of shear
deformation and rotary inertia may be of considerable magnitude. Various investigators in
the field of turbine-blade vibrations have solved the differential equations of motion, by
taking into account one or more of the above-mentioned effects.

The analysis of tapered beams has been made by many investigators using different
techniques. Rao [1] used the Galerkin method, Housner and Keightley [2] applied the
Myklestad procedure, Rao and Carnegie [3] used the finite differences approach, Martin
[4] adopted a perturbation technique and Mabie and Rogers [5] solved the differential
equations using Bessel functions to find the natural frequencies of vibration of tapered
cantilever beams.

In analysing the pre-twisted beams, various approaches have been used by various
investigators. Mendelson and Gendler [6] used the station functions, Rosard [7] applied
the Myklestad method, Di Prima and Handleman [8] adopted the Rayleigh-Ritz
procedure, Carnegie and Thomas [9] used the finite difference techniques and Rao [10]
considered the Galerkin method for the analysis of pre-twisted beams. The bending
vibration of a twisted rotating beam was considered by Targoff [11].

The rotation effect in beam analysis has also been considered using different formulation
and solution procedures. Targoff applied the matrix method, Yntema [12] applied the
Rayleigh—Ritz procedure, Isakson and Eisley [13] used the Rayleigh-Southwell procedure,
Banerjee and Rao [14] applied the Galerkin procedure, Carnegie et al. [15] applied the
finite difference scheme, Krupka and Baumanis [16] used the Myklestad method and Rao
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and Carnegie [17] used the extended Holzer method to find the vibration characteristics of
rotating cantilever beams.

The finite element technique has also been applied by many investigators, mostly for the
vibration analysis of beams of uniform cross-section. All these investigations differ from one
another in the nodal degrees of freedom taken for deriving the elemental stiffness and mass
matrices. McCalley [ 18] derived the consistent mass and stiffness matrices by selecting the
total deflection and total slope as nodal co-ordinates. Kapur [19] took bending deflection,
shear deflection, bending slope and shear slope as nodal degrees of freedom and derived the
elemental matrices of beams with linearly varying inertia. Carnegie et al. [20] analyzed
uniform beams by taking few internal nodes in it. Nickel and Sector [21] used total
deflection, total slope and bending slope of the two nodes and the bending slope at the
mid-point of the beam as the degrees of freedom to derive the elemental stiffness and the
mass matrices of order seven. Thomas and Abbas [22] analyzed uniform Timoshenko
beams by taking total deflection, total slope, bending slope and the derivative of the
bending slope as nodal degrees of freedom.

The finite element analysis of vibrations of twisted blades based on beam theory was
considered by Sisto and Chang [23]. Sabuncu and Thomas [24] studied the vibration
characteristics of pre-twisted aerofoil cross-section blade packets under rotating conditions.
An improved two-node Timoshenko beam finite element was derived by Friedman and
Kosmatka [25]. The vibration of Timoshenko beams with discontinuities in cross-section
was investigated by Farghaly and Gadelab [26, 27]. Corn et al. [28] derived finite element
models through Guyan condensation method for the transverse vibration of short beams.
Gupta and Rao [29] considered the finite element analysis of tapered and twisted
Timoshenko beams.

In this work, the finite element technique is applied to find the natural frequencies
and mode shapes of beams in the bending-bending mode of vibration by taking
into account the taper, the pre-twist and the rotation simultancously. The coupling that
exists between the flexural and torsional vibration is not considered. The taper and the
angle of twist are assumed to vary linearly along the length of the beam. The element
stiffness and mass matrices are derived and the effects of offset, rotation, pre-twist, depth
and breadth taper ratios and rotary inertia and shear deformation on the natural
frequencies are studied. Various special cases of beam vibration can be obtained from the
general equations derived.

2. ELEMENT STIFFNESS AND MASS MATRICES

2.1. DISPLACEMENT MODEL

Figure 1(a) shows a doubly tapered, twisted beam element of length [ with the nodes as
1 and 2. The breadth, depth and the twist of the element are assumed to be linearly varying
along its length. The breadth and depth at the two nodal points are shown as by, h; and
b,, h, respectively. The pre-twist at the two nodes is denoted by 0; and 0,. Figure 1(b)
shows the nodal degrees of freedom of the element where bending deflection, bending slope,
shear deflections and shear slope in the two planes are taken as the nodal degrees of
freedom. Figure 1(c) shows the angle of twist 0 at any section z. The beam is assumed to
rotate about the x-x-axis at a speed of Q rad/s.

The total deflections of the element in the y and x directions at a distance z from node 1,
w(z) and v(z), are taken as

w(z) = wy(2) + wi(2),  v(2) = vy(2) + v4(2), 1
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Figure 1. (a) Anelement of tapered and twisted beam, (b) degrees of freedom of an element, (c) angle of twist 0,
(d) rotation of tapered beam.

where wy(z) and v,(z) are the deflections due to bending in the yz and xz planes respectively,
and w(z) and vg(z) are the deflections due to shear in the corresponding planes.
The displacement models for wy(z), wy(2), v,(z) and vy(z) are assumed to be polynomials of

third degree. They are similar in nature except for the nodal constants. These expressions
are given by

wy(z) = % (223 = 3Iz2 + 1¥) + % (3lz2 — 223 — % (23 —2Iz% + IP2) — ta (z° —Iz?)

wy(z) = % (223 = 3Iz2 - 1¥) + % (3lz2 — 223 — % (23 —2Iz% + IP2) — Us (z° —Iz?)
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vy(2) = l3 2223 =312 — 1P + (3lz —22%) — 2123 = 2122 + I22)

l
@

0y(z) = B3 (223 — 3122 — IP) + % (3122 — 22%) — % (23 — 2122 + I2)

where uq, u,, uz and u, represent the bending degrees of freedom and us, ue, u, and ug are
the shear degrees of freedom in the yz plane; uq, uyq, u;; and u, represent the bending
degrees of freedom and u;3, t;4, ;5 and u;¢ shear degrees of freedom in the xz plane.

2.2. ELEMENT STIFFNESS MATRIX

The total strain energy U of a beam of length [, due to bending and shear deformation
including rotary inertia and rotation effects is given by

Elxx 6 Wy 62Wb @2171, EIyy ﬁzvb 2
H < > tE Tt o
UAG ([ 0wg\? A 1 owy  Owg\?
+ 3 {( 82) + pe dz -l-2 P(z) e + pe dz (3)

1 1 1
f P(2) <6“” + a“) dz—J Pu(2)(wp + wy) dz — f pul(2) (0 + vy dz.
0

0 0z 0

+

[NSR

where

P(z) = f mQ2¢ dé ~ pg‘j (L + ¢ — (e + 2o + 2]

etz,+z
)
AQ? 1 1 1
:pg |:<L+2L2—ez —2z> (e +z)z — 22}
AQ? AQ?
(@) =L ), @) =P 40, (5.6)

g

where e is the offset and z, is the distance of the first node of the element from the root of the
beam as shown in Figure 1(d), and P(z) is the axial force acting at section z.
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As the cross-section of the element changes with z and as the element is twisted, the
cross-sectional area A4, and the moments of inertia I,,, I,, and I, will be functions of z:

A(5) = bEh(z) = {bl + (b= b»?} {hl +(h = mﬁ}

. (7
=5 (c12% + cylz + c51?),
where
¢y =(by —by)(hy — hy), ¢ =by(hy —hy) + hy(by —by), c3=Dbyhy, (8)
I..(z2) =1, cos?0 + 1, sin?0, I,,(2) =1, cos*0 + I, sin*0,
sin 20
Ixy(Z) = (Ix’x’ - Iy’y’) T’ (9)

where x'x" and y’y’ are the axes inclined at an angle 0, the angle of twist, at any point in the
element, to the original axes xx and yy as shown in Figure 1(c). The value of I.,, = 0 and the
values of I, and I, can be computed as

b(z)h’(2)

1
Ix’x’(Z) = 12 = W [a124 + 112123 + a31222 + a4l3Z + a514], (10)
where
ay = (b, — by)(hy — h1)3, a, =by(h, — h1)3 + 3(by — by)(hy — hl)zhla
ay = 3{bihy(h, — hy)* + (by — by)(hy — h1)h%, (11
a4 = 3b1h%(h2 —hy) + (b; — b1)hi’: as = b1h%,
h(z)b? 1
Iyy(2) = (2)12 9 _ T [12* + dal2* + dP2 + dulPz + ds1*), (12)
where

dl = (hz - hl)(bz - b1)3> dz = hl(bZ - b1)3 + 3(h2 - hl)(bZ - bl)zbls
dy =3{hyby(by —by)® +(hy —hy)(by —by)b3, (13)
dy =3hbi(by —by) +(hy —hy)b3, ds = h;b3.

By substituting the expressions of wy, wg, vy, Us, 4, Iy, I, and I, from equations (2), (7)
and (9) into equation (3), the strain energy U can be expressed as

U=3u"[K]u, (14)
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where u is the vector of nodal displacements uy, u,, ..., u;s, and [K] is the elemental
stiffness matrix of order 16. Denoting the integrals

dﬂlEI""(@ZMZ}b) dz = [uy uy us ugJ"[AKI[uy uy us ugl, (15)
] <6 Ub) dz =[ug uyo usq u12] " [BK][ue uio tyg Uil (16)
J* AG@?) de = [us uo ur us]"[CK]us ug ur us) (17
| EIxy<a;ZV§b> <620b> z=T[uy uy us ug]"[DK][to tyo gy tigs], (18)
I, Z)<6_v;,,> dz = [uy uy us ugJ"[EK][uy uy us uy] (19)
and
ﬂ 2pAQ2(w§) dz =[u; uy uy ug |"[FK][uy uy uz us], (20)

the element stiffness matrix can be expressed as

[K]=
[4K] + [EK] — [FK] [EK] — [FK] [DK] (0]
[EK] — [FK] [CK] + [EK] — [FK] (0] (0]
[DK] (0] [BK] + [EK] — [FK] LEK] — [FK]
(0] (0] LEK] — [FK] [CK] + [EK] - [FK]

(21)

where [AK], [BK], [CK], [DK], {EK] and [FK] are symmetric matrices of order 4 and
their elements are formulated in Appendix B. [0] is a null matrix of order 4.

2.3. ELEMENT MASS MATRIX

The kinetic energy of the element T including the effects of shear deformation and rotary
inertia is given by

1 [ 2 2 2
pA [Ow,  Owy pA (v,  Ovg pl,, [ 0%v,
T = | —= _0 L 24
L|:2g<0t+6t> g <6t+6t g \az o
N pley [Py [ 0% N ol [ 0*w,\? d
g \ozor)\oza) " 2g \ezae) |2

(22)
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By defining
oA [0 2
P<0Wb> dz = [ty 1y tiy ] [AMI[0y sty Us], ®)
Jo & ot
tlol 02 2
1% xx< Wb> dZ — [M1 dz 1j3 u4:|T[BM] [ul uz d3 u4]9 (24)
Jo g 0z Ot
(' pl,, (070, \? S io Uijo ligy U
Plyy ') dz = [t tiyo tiyy ti1,]" [CM][to tiyo tiyy tiy5], (25)
Jo g 0z Ot
and

Pol,, (0w, [ 0%v
L ng(az ai) <62 6bt> dz = [y 1, tj 144:|T|:DM] [ty tiyo tiyg tga2], (26)

where 1, denotes the time derivative of the nodal displacement u;, i =1,2, ..., 16, the
kinetic energy of the element can be expressed as

T =3u[M]q, (27)

where [ M] is the mass matrix given by

[AM] + [BM] [AM] [DM ] (0]
[M] = [AM] [AM] [AM ] [0] (28)
16 x 16 [DM] [AM] [AM]+[CM] [AM]
(0] [0] [AM ] [AM]

and [AM], [BM] [CM] and [DM] are symmetric matrices of order 4 whose elements are
defined in Appendix A.

2.4. BOUNDARY CONDITIONS

The following boundary conditions are to be applied depending on the type of end
conditions.

oW 0v, 0%vy, wy

F d =0, — =0, — =0, —-=0. 29
fee end 3, © oz T 022 T 022 (29)
8Wb @vb
Clamped end wy,=0, w,=0, v,=0, v,=0, — =0, — =0. (30)
0z 0z
0? 0?
Hinged end w,=0, wy=0, v,=0, v,=0. —2—0, "0 _q, (31)

0z?
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TaBLE 1

Natural frequencies (Hz)

No of First mode Second mode Third mode Fourth mode
elements
1 304.3 1191-66 232707 455223
2 296-22 1161-70 1779-50 4106-83
3 295-03 115597 1746:55 3747-04
4 294-85 1154-94 1741-39 3697-05
5 294-78 1154-67 173999 3689-82
6 294-78 1154-58 1739-40 368398
7 294-78 1154-54 173925 3683-91
8 294-78 1154-50 1739-10 3683-85

Data: length of beam = 0-1524 m, breadth at root = 00254 m, depth at root = 0-0046 m, depth taper
ratio = 229, breadth taper ratio = 256, twist angle = 45°, shear coefficient = 0-833, E = 2:07 x 10'! N/m?,
G = E/2-6, offset = 0, mass density = 800 kg/m?.
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Figure 2. Effect of depth taper ratio and shear deformation on frequency ratio of rotating beam: ——, without

shear deformation; - - — —, with shear deformation.
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3. SPECIAL CASES

The various special cases of the beam vibration problem can be solved by applying one or
more of the following four conditions:

(a) For non-rotating beams: Q = 0 which results in [EK] = [FK] = [0]. (32)
(b) For uniform beams: by setting b, = b, and h, = hy, one obtains
ci=c,=0and c3=bh,a,=a,=a3;=a,=0 and as=bh3, (33)

d1=d2=d3=d4=0 and dszhlbi’
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Figure 3. Effect of breadth taper ratio and shear deformation on frequency ratio of rotating beam: ——, with
shear deformation; - - — —, without shear deformation.
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(c) For neglecting the effect of shear deformation: wy, = vy, = 0 so that equations (1) and (2)
become

w(z) = wy(z) and v(z) = vy(2). (34)

Due to this, the order of [K] and [ M] matrices reduces from 16 to 8.
(d) For beams without pre-twist: in this case, there will be no coupling between the moment
of inertia terms and one obtains

I..=1 I,=1,,, I

yyo Xy

xx x'x"s yy = 0 (35)

For vibration in the yz plane, v, = v, = 0; for vibration in the xz plane, w, = w, = 0.

This condition further reduces the size of matrices [ K] and [M] by half. Thus, for the
general case (with shear deformation) the matrices will be of order 8 and, if coupled with
condition (c) these will be of order 4.

If the conditions (a), (b) and (d) are applied one gets the following expressions for [K] and
[M] for non-rotating uniform beams without pre-twist but with a consideration of rotary
inertia and shear deformation effects (for vibration in the y-z plane):

12 —12 -6l -6/ 0 0 0 0
12 6l 6l 0 0 0 0
412 21? 0 0 0 0
EI 41> 0 0 0 0
K1 = xx , 36
[K] I3 36 —-36J =3l =3l (36)
Symmetric 36J 31 31
412y —12J
L 4127 |
pAl
M1l ="
[M] 420g
[ 156 + 36P 54 —36P 221 —3IP 131—3IP 156 54 221 131]
156 + 36P —131 + 3IP 221+ 3IP 54 156 —13I 221
47 +41°P 31> —1*P 221 —13] 4> 32
412 —41’P 131 221 =312 4]?
,» (37)

156 54 221 131
156  —13I 221

41> =317
417 |

where J = uGb, hyI*/(30EL,), and P = 141 /(b,h,1?),
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Equations (36) and (37) further reduce to the following well-known equations if the effects

of shear deformation and rotary inertia are neglected:

12 —12 -6l -6l
EI,, 12 6l 6l
[K] = 3 . 2 2
l Symmetric 4l 21
4%
156 54 =221 13l
156 —131  22]
[M] = pbyhy .
420g Symmetric 41> =3l
4%

4. NUMERICAL RESULTS

(38)

(39)

The element stiffness and mass matrices developed are used for the dynamic analysis of
cantilever beams. By using the standard procedures of structural analysis, the eigenvalue

4-0
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0 100 200 300

Ip.s —p
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Figure 4. Effect of rotation and twist on first and second natural frequencies.
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problem can be stated as

(K] — ?[M])U =0,

(40)

where [K] and [M] denote the stiffness and mass matrices of the structure, respectively,
U indicates nodal displacement vector of the structure, and w is the natural frequency of

vibration.

A study of the convergence properties of the general element developed has been made
and the results are given in Table 1. It is seen that the results converge well even with only
four elements. The effects of shear deformation and depth taper ratio on the natural
frequencies of a rotating twisted beam are shown in Figure 2 for a beam of length 0-254 m,
offset zero, depth at root 0-00865 m, breadth at root 0-0173 m, twist 45°, rotation 100 r.p.s.

1 0°Twist 19
9@9"‘3_‘__.———-/
- —-—;(')0 twist
10 18
o 6&@‘__—-——/ -
I T D | ————— oy
=} oo —— = o 5
g 60° twist 2
g 5
& =]
o Q
S 2
g g
f =
= t
= 16 3
=
= &
] 200 twist
7 15
rme—————a———————— -———
—————————————— - —900 pwist
6 14
100 200 300
Ip.s —»
Figure 5. Effect of rotation and twist on third and fourth natural frequencies: ——, third mode; - -

mode.

-, fourth
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and breadth taper ratio 3. The material properties of the beam are taken the same as those
given in Table 1. The effect of shear deformation is found to reduce the frequencies at higher
modes while at lower modes the results are nearly unaffected. There is an increase in the
frequencies of vibration with an increase in the depth taper ratio in the first, second and
fourth modes while a decrease has been observed in the case of third mode (vibration in
a perpendicular plane). Figure 3 shows the variation of natural frequencies with breadth
taper ratio. In this case the data are the same as in the case of Figure 2.

In Figures 4 and 5, the variation of frequency ratio with rotation and pre-twist is
studied. It can be seen that the frequency ratio changes slightly with the rotation
but appreciably with the twist. At higher modes (in Figure 5) the effect of twist can be seen
to be more pronounced. It is also observed that the frequency ratio increases with
an increase in the twist in the case of first and third modes while it decreases with an increase
of the twist in the case of second and fourth modes of vibration. In Figure 6, the effect of
offset is studied for a twisted blade having 60° twist with the other data the same as that of
Figure 4. It is observed that an increase in offset changes the frequency ratio more at higher
values of rotation. The frequency ratio has been found to increase with an increase in the
offset.

17-0 .| Fourth
mode
168 2
16:6 1 W
Offset Third
% - mode
96 =y
Vv
<
Offset
=
g 3?2
§ 30
n:? = Second
8 28 7/ mode
g Offset
£ =
1.2
) — —
1-0 - ——]
aL First
0-3 Offset T mode
06
04
0
0 100 200 300
Ip.s —»

Figure 6. Effect of offset and rotation on frequency ratio. Offset 1: ¢ = 0 m; offset 2: e = 0.0254 m; offset 3:
e = 0.0508 m; offset 4: ¢ = 0.0762 m.
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5. CONCLUSION

The mass and stiffness matrices of a thick rotating beam element with taper and twist are
developed for the eigenvalue analysis of rotating, doubly tapered and twisted Timoshenko
beams. The element has been found to give reasonably accurate results even with four finite
elements. The effects of breadth and depth taper ratios, twist angle, shear deformation, offset
and rotation on the natural frequencies of vibration of cantilever beams are found. The
consideration of shear deformation is found to reduce the values of the higher natural
frequencies of vibration of the beam. An increase in the breadth and depth taper ratios is
found to increase the first two modes of vibration. The frequency ratio is found to change
only slightly with rotation but appreciably with the twist of the beam.
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APPENDIX A: EXPRESSIONS FOR STRAIN AND KINETIC ENERGIES
1. EXPRESSION FOR STRAIN ENERGY (U)

1.1. Strain energy due to bending

If the bending deflections in yz and xz planes of a beam are w, and v, respectively, the

axial strain and stress induced due to w, and v, are given by ¢, due to w, = — y(0%w,/0z%);
& due to v, = — x0%0,/0z> and oy, due to w,= — Eyod*w,/0z% o, due to v, =
— Ex 0v,/02°.

The strain energy stored in the beam due to bending is given by: U due to bending

1
= E JV ExxOxx AV

(6xx due to wy, + &y, due to vy)(0y, due to wy, + o, due to v,) dV

[l
N =
< 4

E ! 0wy \2 5 0%vp\? 0wy, 0%v,
_Z R 244 4280 4
zLdZK aﬁ) Ly dA+\52 Lx A+ 25752 nyd

[ ELs (0wy) %, 0%,  EL, (070,
=H 2 <6> i e e B (A1)

where V' is the volume, [ is the length and A is the cross-sectional area of the beam.
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A.1.2. Strain energy due to shearing

Let F, and F, be the shear forces that produce the shear deflections dv; and dw; in an
element of length dz respectively. Then the strain energy of the beam due to shearing is
given by

1 l dl)s dWs
Udue to shearing — E J;) <Fx E + Fy dz > dz.

By substituting AGu dvy/dz and AGu dw,/dz for F, and F,, respectively, one obtains

1 2 2
pAG [ (dw, du
N + (2% 4. A2
due to shearing J() > |:< dz ) <dZ zZ ( )

A.1.3. Strain energy due to rotation

The rotation of a beam induces an axial force P in the beam due to centrifugal action. If
the beam is bending in the yz plane (Figure A1), the change in the horizontal projection of
an element of length ds is given by

a 2)1/2 1 a 2
ds —dz = {(dz)z n <f” dz> } —dza= <W> dz.
0z 2\ 0z

Since the axial force P acts against the changes in the horizontal projection, the work done
by P is given by

1 dw)?
UduetoPandw = - E J\ P(Z) <E> dz. (A3)
0

The work done by the transverse distributed force p,,(z) can be written as

1
Udue top, — J\ Dw (Z) w dZ' (A4)

0

>

Mq+dM,

P+ dP=P+a—P dz
dz

Figure A.1. An element of the beam in equilibrium.
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The expressions corresponding to the bending of the beam in the xz plane can be obtained
similarly as

1 1 dv 2 1
UduetaPandv = 5 J P(Z) <dZ> dZ’ Uduetop., = J pv(z)v dz. (AS, 6)
0 0

The total strain energy of the beam can be obtained as given in equation (3) by combining
equations (A.1)-(A.6).

A.2. EXPRESSION FOR KINETIC ENERGY (T)

Consider a small element of area dA and length dz at a point in the cross-section having
co-ordinates (x, y) with respect to x- and y-axes. The kinetic energy of this element is given
by

0

5, [0V + %) + (v, + x$,)*]1dzd4,
g

where ¢, and ¢, denote the bending slopes, dv,/0z and dw,/0z, respectively, and a dot over
a symbol represents derivative with respect to time. Integrating this equation over the beam
cross-section, the kinetic energy of an element of length dz can be obtained as

P

T =
d 2

[AG? + %) + (L i + 2Lty + 1, $3)] dz.
The kinetic energy of the entire beam (T') can be expressed as

!
T = J [ﬁ (W? + %) + £(Ixx(lsy2 + 21,y + I,,0H)]dz, (A7)
2g 2g

0

which can be seen to be the same as in equation (22).

APPENDIX B: EXPRESSIONS FOR [AK], {BK], ..., [DM]
The following notation is used for convenience:

rl

U=|z"1dz L= i=12,..,n, (B.1,2)
Jo
rl

V= zi_lcosz[(ﬁz—el)j—f-ﬁl]dz, i=1,2,...,n, (B.3)
Jo
rl ) z

S, = z“lsin2[(02—01)l+01}dz, i=1,2,....n, (B.4)
Jo

where 0; and 0, denote the values of pre-twist at nodes 1 and 2, respectively, of the element.
As the nature of wy, wg, v, and v, is the same except for their positions in the stiffness and
mass matrices, one can use w to denote any one of the quantities wy, wg, v, or v, and in
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TaBLE Bl
Values of H; ;, R; j 1, Qi jx
Rijx Oijx
i j Hy; k=1 k=2 k=3 k=1 k=2 k=3 k=4 k=5
1 1 0 144-0  —1440 36:0 36:0 —72:0 36:0 0-0 0-0
1 2 0 —1440 144-0 —36:0 —360 720 —36:0 0-0 0-0
1 3 1 —72:0 84-0 —24-0 —180 420 —300 60 0-0
1 4 1 =720 60-0 —12:0 —180 30:0 —12:0 0-0 0-0
2 2 0 144-0 —144-0 360 360 —72:0 36:0 0-0 0-0
2 3 1 720 —84-0 24-0 180 —42-0 300 —60 00
2 4 1 72-0 —60-0 12-0 180 —30:0 12-0 0-0 0-0
3 3 2 360 —48:-0 160 9-0 —24-0 220 —-80 1-0
3 4 2 36:0 —36:0 80 9-0 —18:0 11-0 -20 0-0
4 4 2 36-0 —24-0 4-0 9-0 —12:0 4-0 0-0 0-0

a similar manner the set (i, i1,, I3, il4) can be used to represent any one of the sets
(uy, uz, Uz, ug), (Us, Ug, U7, Ug), (o, Ugg, Uyy, Ug2) OF (Uy3, Uga, Uss, Uge). Thus,

Wi(z) = % (223 — 312% + 1?) — % (23 — 2022 + I’2) + % (3122 — 22%) — % (z3 — 122, (B.5)
‘;—VZV - % (622 — 6lz) — % (322 — 4lz + I7) + % (6lz — 62%) — % (322 — 2l2), (B.6)

d*w i i i iy

Tz = (122 = 6) = 72 (62 — ) + 3 (6] — 122) — 3 (6 — 2} (B.7)

By letting P, (i=1,...,4;j=1,...,4 k= 1,...,7) denote the coefficient of z*~* I’ "* for
the @ui; term in the expression of W%, Q; i, (i=1,....,4; j=1,....,4 k=1,...,5), the
coefficient of z*~* [°7¥ for the ;ui; term in the expression of (dw/dz)%, R j, (i=1,...,4;
j=1,...,4 k=1,...,3), the coefficient of z*~* [** for the ;ui; term in the expression of
(d*w/dz?)?* H;; (i=1,...,4; j=1,...,4), the index coefficient of [ to account for the
difference in the index of [ due to multiplication of rotational degrees of freedom u; and
it and the displacement degrees of freedom 5 and i, the values of P; ; x, Q; ;. x, R;, ;. and
H; ; can be obtained as shown in Tables B1 and B2.

B.1. EVALUATION OF [BK]

As the procedure for the derivation of [AKT, [BK], ..., [DM] is the same, the expression
for [BK] is derived here as an illustration:

N2

! 020, \2
[uo uio Ugy “12]T[BK] [uo uro Uy Ugz] = El, aizb dz
0 oz

1 aZW 2
= J\O Elyy <622> dZ,

(B.8)
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TaBLE B2
Values of P; ;

Pi,j,k
i j k=1 k=2 k=3 k=4 k=5 k=6 k=17
1 1 4-0 —120 9-0 4-0 —6:0 0-0 1-0
1 2 —40 12:0 —-90 —-20 30 00 0-0
1 3 —20 70 —80 2:0 2:0 —10 0-0
1 4 —-20 50 —-30 —10 10 00 0-0
2 2 40 —120 9-0 0-0 00 00 0-0
2 3 2:0 —70 80 —-30 00 00 00
2 4 2:0 —50 3-0 0-0 00 00 0-0
3 3 1-0 —40 60 —40 10 00 00
3 4 1-0 —30 30 —1-0 00 00 0-0
4 4 1-0 —-20 10 00 00 00 0-0
where
uy Ug
7l u
w=uv, and _2 =
Us Ugyq
Uy Ugz

Substituting the values of I,, and w into equation (B.S8),

1 aZW 2 1 , z
J’ Elyy F dZ = j E Ix’x’ + (Iy’y’ — Ixfxf) COS (02 — 91)7 + 91
0 z 0

- 2
(62 — 4l) + % (6] — 122) — % (62 — 21)} dz

(B.9)
E

[’}‘; (12 - 6) - 73

with
BK, ; = coefficient of u,iu1; = coefficient of uguq
E 1
= g L |:<(alz4 b aylz® + as22% + ayPz + asl?)

+ {(d124 + dleS + d31222 + d4132 + dsl4)

— (@12 + @512 + a3l + aPz + asl) cosz{(ﬁz - 91)§ + 01}>

X {R1’1,122 + Rl,lyzlz + R1’1’312}:| dZ
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E 5
:WL(HLHU Z ai[Rl,l,lUS*i + Li+1R1,1,2U77i + Li+2R1,1,3 V6*i]
i=1
(di — a)[LiRy 1 1 Vs—i + Liv 1Ry 1 2Vo—i + Lis 2Ry 13 Vs—i] (B.10)
E
:12l10 L(H“H) Z Z {aLH'J 1U9 i JR1 1JJ +( {LH-j 1V9 i— JRI IJ}
i=1j=1

This relation can be generalized as

5 3

E
BK; ;= 12[10L(H1M) Z Z {a:Li+j-1yUo-i-pRrs. i}

i=1j=1

+(di—a){Li+j-1yVo-i—pRry ), I=1,...,4, J=1,...,4,

Similarly,

(B.11)
5 3
~ 110 Z Z [ailas iy Uo-i-pRe i
=1j=
+ (di - ai){L(iJerrH,'J)V(9fifj)RI,J,j}]a I= 1,~~~,4, J = 1,~--,4~
5 3
AKIJ - 1211 Z Z [{diL(i+j+H1,J) U(9—i—j)RI,J,J'}
=1j=1
(B.12)
+(ai_di){L(i+j+HI'J)I/(‘)—i—j)RI,J,j}]a 121,...,4, JZI,...,4,
#G >
CK]’J —— Z Z [C L(l+J+HIJ)U(9 i— j)QIJj:l 121,...,4, J :1,...,4, (B.13)
i=1j=1
5 3
DKI’J_lzll Z Z )L(1+J+H,J)S(9 i— ])RIJj] I=1,...,4, J=1,...,4,
(B.14)
7
AMISJ_gPS Z Z ECL(1+]+H1J)U(11 i— j)PIJ]] 121,...,4, J:1,...,4, (B.IS)
i=1j=1
p 5
MIJ 12 llo Z Z [{d L('+J+H”)U(11 i— J)QIJJ}
i=1j=1
(B.16)
+ (a; — di){L(i+j+H,VJ)V(llfifj)QI,J,j}]a I=1,...,4, J=1,...,4,
CM,y ;= 12g llO Z Z [{aili+jrmpUni-i-»Qru.
i=1j=1
(B.17)

+(di —a){Lg+jem )Var-i-pQrajitl, I=1,...,4, J=1,...,4,
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DMIJ 12 llo Z Z [(Cl di)L(i+j+H,”,)S(ll*i*j)QI,J,j]s
i=1j=1

(B.18)

B.2. EVALUATION OF [EK] AND [FK]

[uy uy ts u4]T[EK] [uy u, us uy] = J\IP(Z) <%>2 dz

0
[ pAQ? 1
-7 |:<L+2L2—ez—z

Jo & >
(B.19)
rl AQ2 1 a 2
R <eL+—L2—eze—z><ﬂ>d
Jo & 2 0z

”lpAQZ(e—i-z)z oy 2dz— llpAQZzz O 2dz
Jo & ‘ 0z 02 g 0z '

Thus,
,DQZ 1 3 5
EKI,J = T (eL + 5 L? — €z, — Zg) Z Z [CiL(H—j-%—H,J) U(9—i—j)QI,J,j:|
8 i=1j=1
,OQ 3 5
g etz Z Z [CiLi+j+m, p)Uiao-i-jQr.s.i]
i=1j=1
(B.20)
pQZ 5
lg Z Z [CL(1+1+H,J)U(11 i— ])QIJ}] I=1,..,4 J=1,..,4

i=1j=1

Similarly,
2[)92 3 7
FKI,_]— gl L Z [CiL(i+j+H1.J)U(11*i*j)PI,J,j]a Izl,...,4, J:I,...,4. (B.Zl)
APPENDIX C: NOMENCLATURE

A area of cross-section
b breadth of beam
e offset
E Young’s modulus
g acceleration due to gravity
G shear modulus
h depth of beam
Iy, 1y, 1y moment of inertia of beam cross-section about xx-, yy- and xy-axis
[K] element stiffness matrix

length of an element
L length of total beam
[M] element mass matrix
t time parameter

u nodal degrees of freedom
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=S

=
<

NN
®

frequency ratio

DET O™ KR

Subscripts
b
s

S. S. RAO AND R. S. GUPTA

strain energy

displacement in xz plane

displacement in yz plane

co-ordinate axes

co-ordinate axis and length parameter

distance of the first node of the element from the root of the beam
ratio of modal frequency to frequency of fundamental mode of uniform beam with
the same root cross-section and without shear deformation effects
depth taper ratio = hy/h,

breadth taper ratio = by /b,

angle of twist

weight density

shear coefficient

rotational speed of the beam (rad/s)

bending
shear
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